il SPK

and Associates

www.spkaa.com
Ph: 888-310-4540

SPK and Associates
900 E Hamilton Ave, Ste.100
Campbell, CA 95008

Accelerating Your Software Build - A Customer Experience

Introduction

Your software compile turn-around time is one of
the key metrics which determine your
organization’s productivity. Long builds equate
to fewer opportunities (lower number of
available cycles) to be able to add new features
and focus on quality. The following describes
one of our customer experiences in helping to
accelerate their software build system.

Bad Things Sometimes Happen with Slow Builds

Engineers are very smart people. If they areona
tight schedule and the build cycle time is holding
them back, they will find ways to work around it.
However, sometimes the approaches taken have
a negative impact on the overall process.
Examples include:

- The Engineer may only build his/her piece
and opt out of building the larger component.
The risk incurred may include missing
dependencies which ultimately could break
the system (CM) build.

- The Engineer may hold his/her code until
ready to build all changes at once. The risk
incurred may include a lack of incremental
change sets making debugging (or backing
out) code more difficult.

- The Engineer may reduce creation and/or
execution of unit tests. This may lead to
reduced quality and the discovery of issues

later in the overall process (which is more
costly).

All these behaviors (and more) were occurring
with this one particular customer ISV.

Setting the Stage

The customer’s software product was being
generated from a GNU makefile infrastructure.
The code base was primarily C & C++. There
were several build platforms in play but we
focused primarily on the developer’s core OS
environment which was Redhat. The
configuration management system was ClearCase.
The build job was a single-threaded compile on a
centralized resource. The overall build time was
taking close to 6 hours. Engineers were
provided with a “local build” for their team
launching every night on this server. If all went
well, the code was then promoted to formal CM
integration build on a different server the next
day.

The goal was to achieve a 30 minute or less build
cycle. Doing so would allow the company to
adopt iterative or agile development techniques.

Improvement - 1% pass
We are able reduce the local build turn-around
time by roughly 50% by doing the following:

- We modified code hierarchy access process
to leverage snapshot views from ClearCase
instead of dynamic. By reducing the number
of times the build needed to go back to the



wll SPK

and Associates

"VOB" over the network, we gained some
speed-up.

- And we moved the build to a multi-core
machine with local disk and passed a “make —
J2/3” flag to create some concurrency in our
compile threads.

Next Steps — 2 Steps forward, One Step Back

We then hit a wall. Our “make —J” worked great
for the 1st 2X/3X of speedup, but as we got
beyond that (J4 +), our builds would break.

The source of the build problems was the lack of
the identification of the compile’s implicit
dependencies (where the developer didn’t fully
specify them in the makefile).

To make matters worse, in some cases, we got an
obvious broken build. But in other cases, we
got an inaccurate, but apparently correct build
which caused all sorts of headaches and very
hard to debug.

The other problem we encountered with make —
J4+ was with those buildmeisters who wished to
continue leveraging the ClearCase dynamic view
for source hierarchy access. The more threads
(—=)'s) they used, the more file stats() were sent
back to the VOB and View Server. That reduced
the performance of both the VOB and View
server.

It became very obvious that we were not going
the get the build time down low enough using
traditional methods (buying more hardware,
using things like make —J, or trying to use build
avoidance technologies like wink-in).

Improvement — 2nd pass

We were able to bring our builds down to 29
minutes (an additional 7X improvement), by
leveraging Electric Cloud’s ElectricAccelerator
solution. Getting there required us to swap out

www.spkaa.com
Ph: 888-310-4540

SPK and Associates
900 E Hamilton Ave, Ste.100
Campbell, CA 95008

the existing GNU make with ElectricAccelerator’s
emake. After some minor cleanup, we were able
to migrate all of makefiles with no issues.

ElectricAccelerator achieves its impressive
parallelization partly by monitoring the file access
level, what files are read and what files are
written, by every target in the build. From that it
creates a dependency map. So, if something was
run out of order in a later compile, it can build it
quickly, while the build is still in flight, throw
away that initial result for that target and rerun it
so that the build is still guaranteed to be clean.
That allowed us to push our compile to utilize 20
CPUs in parallel without breaking the build.

Another benefit is ElectricAccelerator’s caching
technology, which lowers the number of calls to
the ClearCase VOB/View server.

Fine Tuning the Build

We were also able to utilize Electric Cloud’s
Electriclnsight companion product to
ElectricAccelerator. The tool reads the output of
Accelerator and gives you a visualization of the
structure of the software build. The GUI shows
you every job in the build and helps you identify
dependencies, conflicts and serializations and
other performance bottlenecks. This made it
much easier to debug what commands were run,
where they were run, and to visually see where
the long poll opportunities for further
parallelization existed.

SPK and Associates is a partner with Electric
Cloud. Call us today to help speed up your build
environment to improve your operations ROI.

Carlos Almeida
SPK and Associates
Architect, Software Engineering


http://www.electric-cloud.com
http://www.electric-cloud.com

