il SPK

and Associates

www.spkaa.com
Ph: 888-310-4540

SPK and Associates
900 E Hamilton Ave, Ste.100
Campbell, CA 95008

Continuous Builds - A Customer Experience

Introduction

In our last article we discussed speeding up your
build by leveraging tools such as Electric
Accelerator. In this article we will discuss the
process of Continuous Integration along with a
customer experience.

What is Continuous Integration?

Continuous Integration (Cl) is the practice of
compiling & testing your software in an
incremental fashion, utilizing on-going
automation.

Via on-demand or scheduled, these compile->test
cycles typically happen multiple times throughout
the day.

Cl offers early feedback to developers uncover
issues early (before code is promoted to the
official CM stream) which aids in quality
improvement.

“An important part of any software development
process is getting reliable builds of the software.
Despite its importance, we are often surprised when
this isn't done. We stress a fully automated and
reproducible build, including testing, that runs many
times a day. This allows each developer to integrate
daily thus reducing integration problems.”

Martin Fowler and Matthew Foemmel, Continuous
Integration

“The macro process of object-oriented development is
one of 'continuous integration." At regular
intervals, the process of "continuous integration"

yields executable releases that grow in functionality at
every release. ... It is through these milestones that
management can measure progress and quality, and
hence anticipate, identify, and then actively attach
risks on an ongoing basis.”

Grady Booch, Object-Oriented Analysis and Design
with Applications

Continuous Integration Benefits Include

Less time spent on builds/deployment

Lower risk of error as operations are scripted
Early notification of errors

Easy to revert to bug-free state

Constant availability of latest executables
Shorter feedback cycles

Let’s you focus on real problems, not
mechanics

+ Makes your boss happy — saves time and $$S

* & 6 ¢ 0 o o

Scott Bateman, Quorum Business Solutions, Inc

Continuous Integration Components

Martin Fowler has a comprehensive website
detailing aspects of Cl. He outlines components
(Practices of Cl) as the following:

+ Maintaining a Single Source Repository

It is important to anchor your process with a
robust software configuration management
system. There are dozens of open source and
commercial options to choose from (Subversion,
CVS, Perforce, AccuRev, ClearCase, GIT...). All
your artifacts required for the build must be

wll SPK

and Associates

captured and managed through the SCM system.
They include items such as:

- Source Code

- Build Scripts

- Test Scripts

- Test Data

- DB files and DB scripts

- Property and Configuration Files

- Projectand 3" Party libraries

- Installation Scripts
In essence, you should be able to go to a clean
disk and checkout everything you need to do a
build.

¢ The Compile/Link/Tests Process Needs To Be
Automated

Whether you’re using ANT or some UNIX tools,

your build/test scripts need to be complete and

automated.

¢ You Must Run Tests For Validation After
Each Build

After compiling & Linking, the Cl process should
run a battery of unit/system tests to catch issues.
A best practice is utilizing Test Driven
Development (TDD) where engineers to create
automated unit tests that define code
requirements (immediately) before writing the
code itself. And those tests are run upfront in
the Cl validation cycle.

¢ Everyone Commits to the Mainline Every
Day

Developers who hold on to their changes too

long are inviting non-trivial large merge events. It

is difficult to manage the communication

between engineers to resolve conflicts so it is

best to not let them accumulate.

¢ The Builds & Tests Should Be Done Exactly
the Same way as the formal CM process
(production environment)

“It works on my machine” syndrome is common

when there are inconsistencies in build/test

www.spkaa.com
Ph: 888-310-4540

SPK and Associates
900 E Hamilton Ave, Ste.100
Campbell, CA 95008

methodologies. Making sure everyone is doing it
the same way will help remove this issue.

+ The Builds (and tests) have To Be Fast
Engineers will not utilize a Cl build process if
feedback is not immediate. They will tend to
hold his/her code until ready to build all changes
at once. The risk incurred may include a lack of
incremental change sets making debugging (or
backing out) code more difficult.

¢ The Executables Should Be Easily Accessible
Agile development depends on quick feedback.
This may come from other developers, QA
engineers, SE’s, beta partners or numerous other
sources. Making it easy for people to find and run
your build output will provide the most amount
of feedback to improve your quality and/or
adjust your feature content.

¢ You Should Include a Robust Report
Dashboard

It is important to have visibility into the status of
your builds/tests. Results communication for
each Cl integration should be published and
updated regularly. Doing so will help provide
metrics for consumers of your build as well as
Program Management data.

¢ You Should Automate the Deployment
Design a model which allows the movement of
artifacts from development to QA to Production.
This should include a method to be able to roll-
back if issues are discovered.

Continuous Integration — Electric Commander
Selected For Our Customer

There are several Continuous Integration
software tools available on the market. For a
comprehensive list including feature breakdown
review the ThoughtWorks website:

http://confluence.public.thoughtworks.org/displa
y/CC/Cl+Feature+Matrix

http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix

wll SPK

and Associates

In our last article we described how we brought
the build turn-around down to 30 minutes (from
6 hours) utilizing Electric Accelerator. While this
is not the most optimal for Cl, it definitely
opened the door for multiple builds/test runs
throughout the day. Continue effort exists to
make builds even faster.

Our ClI tool of choice was Electric Commander.
The reasons for our selection included:

- A tight integration with our make and DRM
solution (Leveraging Electric Accelerator).

- The ability to grow with the organization. We
had completed one product line and wish to
extend the same tool to other areas. Electric
Command offer good scalability allowing us
to add teams and projects.

- Reusability. Electric Commander allowed us
to create generic modular procedures which
could then be leveraged by other products.
i.e. checkout, build, test, deploy. Within
each procedure there are steps with robust
support for Perl scripts and XML Property
Sheets.

- One Key Click Extensibility. We were able
integrate not only the build and test
processes but also extend the automation to
3" party tools such as static analysis, code
coverage and bug tracking systems. A user
could execute the complete flow with one
click.

- Virtualization — Electric Commander allowed
us to provision on-demand resources via its
integration with VMware.

Electric Commander is the software that runs
your factor floor. It moves the software through
your defined methodology and gathers key
metrics to measure performance of both the

www.spkaa.com
Ph: 888-310-4540

SPK and Associates
900 E Hamilton Ave, Ste.100
Campbell, CA 95008

software production processes and the actual
results of your builds.

We liked that it was web based which is great for
globally distributed development teams. We had
folks in Moscow, Bangalore, Beijing, and the U.S.
all having web-based access to the software
production infrastructure and processes. That
meant our developers (where ever they were)
could use the same standardize methodology.

We liked that it is designed to work with existing
tools and processes in our environment. Electric
Commander moves the control of these tools out
of the scripts that they were currently
implemented in and into an interface so that they
can be more easily identified and managed.

We liked that Electric Commander abstracted the
actual machines that runs builds and tests. Folks
no longer needed to be aware of specific
build/test hardware. And this meant that
different teams can use those resources for
production without actually knowing the specifics
of the infrastructure (the machine names, the IP
addresses, the login credentials).

And lastly, we liked the fine grain security
ensuring that the users only have access to
relevant information.

SPK and Associates is a partner with Electric
Cloud. Call us today to help define your
Continuous Integration environment to improve
your operations ROI.

Carlos Almeida
SPK and Associates
Architect, Software Engineering

