

Integrating Meld with Git under Linux

Have you ever used Git? Git has quickly grown to become one of today's most
popular source code management solutions for software engineering projects
large, small, professional and personal. Developed by Linus Torvalds, Git is
classified as a “distributed version control system (DVCS) with an emphasis on
speed.”

How about Meld? Meld describes itself as "a visual diff and merge tool targeted
at developers," and in this author’s opinion, is vastly more intuitive than Git's
built-in diff tool. Meld allows versions of documents to be compared side-by-side,
with color-coded highlighting and arrows indicating additions, deletions and
modifications.

Because Git and Meld are so great at what they do, let's integrate them to work
together so that when we need to perform a diff operation Meld is launched
automatically with the appropriate files.

If you don’t already have them, go ahead and install Git and Meld:

sudo apt-get install git-core
sudo apt-get install meld

http://git-scm.com/
http://www.i-programmer.info/news/136-open-source/2759-git-and-github-top-in-popularity-stakes.html
http://www.i-programmer.info/news/136-open-source/2759-git-and-github-top-in-popularity-stakes.html
http://meldmerge.org/

Git allows us to modify its configuration file in order to specify external tools to
use in place of some of its built-in functionality. It’s not a difficult thing to modify
Git in this way, but there is a slight catch.

First, let's see what happens when we try the straight-forward approach of simply
telling Git to use Meld.

Now head over to one of your Git repositories and try running “git diff“ on a

modified file.

Doesn't work, does it!

Meld should have complained, saying that you gave it too many parameters. By
default, Git will actually try to send 7 parameters when you call git diff. Meld only
needs 2 parameters -- the names of the files to be compared. Let's take a closer
look and see what Git is passing to Meld so that we can fix this situation.

Just for the purposes of seeing what parameters are being passes, create a test
script named “params.sh“ with the following 2 lines:

Make the script executable…

If we instruct git diff to call this test script we can see what parameters it is trying
to pass:

Try running the diff again

You should see seven values which correspond to the following:

[path] [old-file] [old-hex] [old-mode] [new-file] [new-hex] [new-mode]

As I mentioned, Meld only needs two parameters to launch correctly -- the names
of the two files being compared. In this case, we want to send Meld the second
and fifth parameters being provided by Git. To do this, we will create a very
simple wrapper script, named diff.sh.

Make the script executable and instruct Git to call it when running git diff:

Now, when you run git diff, Meld should open with the files you are seeking to
compare.

If for some reason you would like to run the default git diff program after having
made this modification you can add the --no-ext-diff flag when running the

git diff command. This will execute the default git diff program while preserving
Meld as the default setup.

If you want to undo your modification completely, type the following:

You could also manually remove the following lines from the ~/.gitconfig file

to produce the same effect:

[diff]
 external = <path to your script>

David Hubbell
SPK Software Engineer

