EFSPK

and Associates

www.spkaa.com
Ph: 888-310-4540

SPK and Associates
900 E Hamilton Ave, Ste.100
Campbell, CA 95008

Software Development Using Kanban

Introduction

The SPK development team engages with
customers utilizing agile principals. This typically
means incremental sprint deliveries of code as
part of a scrum model. At a recent engagement,
we employed an interesting variation of this
called Kanban.

The concept of Kanban has its origins in the
grocery store industry with respect to keeping
display shelves stocked.

e Typically items are removed from the shelf by
a customer.

e At a certain point the grocery clerk notices
they’re running low on a particular item. The
signal is the visible stocking label (or card)
which is viewable only when the last item is
removed.

e The grocery clerk then must go to the back
storeroom to collect more of the same item
to restock the shelf.

e However, if the storeroom supply is also low
(down to the reorder level), the clerk must
then order more of the same item from the
manufacturer.

Toyota in the 1940’s adopted a similar model to
remove the problem of having an excess or
insufficient inventory of parts. Their on-demand
model made use of 3 bins and note cards:

- One bin for the factory floor
- One bin for the factory store

- One bin for the supplier’s store

Each note card contained specifications for one
specific part. And the total number of cards
created was fixed. i.e. only 100 radiator cap
cards for example.

If a customer purchased an item from the
supplier, their bin would be reduced by one card
for that specific part. Once the supplier bin ran
out of cards, their empty bin would go to the
factory store for restocking. Once the factory
store bin was depleted, they would send their
empty bin to the factory floor signaling them it
was time to make more of that part. So by
keeping an eye on the cards in the bin and
knowing that an empty bin was a signal to
restock or make more parts, a Just-In-Time (JIT)
production model was created. The coined
label Kanban is a combination of the two words
kan and ban; kan meaning visual and ban
meaning card.

Most engineers are familiar with Scrum as it
relates to software development. So how does
kanban apply and what are some of the main
differences?

Both scrum and kanban software development
models begin with creating a visual
representation of all the tasks and the work flow.

One of the 1% key differences between both
models is that kanban limits the amount of work
that can happen in any one phase (or column).

lSPK

and Associates

Just like the car factory worker is not permitted
to produce more parts than the total number of
cards, no team member may pull in a task if the
limit of tasks for that phase has been reached.

In the kanban graphic example below, no more
than 3 tasks can be in the “In Progress” phase
and no more than 2 tasks can be in the “Test”
phase. Measurement of the cycle time is defined
as the average amount of time it takes one item
to go from beginning to end.

Kanban
— To Do In Progress —— r— Test — Done
3 2
|| == | =
T

In contrast, the Scrum graphic example below
shows that team members are permitted to pull
in as many tasks as they desire for any phase (as
long as it is approved by the Product Owner for
the sprint). The team’s understanding of how
many tasks they can accomplish (velocity) is
measured at the sprint level (a time unit — such as
2 weeks).

SCRUM
— To De i1~ In Progress —— — Test — Done
f=el|| ==
Task N
e]

www.spkaa.com
Ph: 888-310-4540

SPK and Associates
900 E Hamilton Ave, Ste.100
Campbell, CA 95008

A second difference between Kanban and Scrum
is respect to organization and roles. Scrum is
more prescriptive requiring cross functional team
membership with roles such as Product Owner
and Scrum Master. Kanban does not require this
structure and is therefore considered by some
easier to introduce into existing company
infrastructures.

Kanban has a finer focus on the identification and
removal of bottlenecks due to its limitation of
tasks per phase. For example, if the In Progress
items are being prevented from moving to Test
due to an issue, the flow stops until the issue is
resolved.

The concept of cadence is commonly contrasted
between Scrum and Kanban. In Scrum the
cadence is typically on delivering increments of
working software with timeboxes. In Kanban the
cadence focuses on the flow of delivering
minimal marketable features with no timeboxes.

Ultimately both systems share the premise of the
feedback loop:

Make a Change
=> Review the Results
=> Learn from it => Make another Change

And both systems strive to make the feedback
loop as short as possible one can make
corrections quickly.

Carlos Almeida
SPK and Associates
Architect, Software Engineering

